Mapping Marine Invertebrate Biodiversity
Hotspots in the Indo-Pacific Ocean Using GIS

Final Report September 2004
Mapping Marine Invertebrate Biodiversity Hotspots in the Indo-Pacific Ocean Using GIS

Final report prepared for The John D. and Catherine T. MacArthur Foundation

Prepared by
Fabio Moretzsohn and Myra K.K. McShane

Bishop Museum
Pacific Biological Survey

Bishop Museum Technical Report No.30

Honolulu, Hawaii
September 2004
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>vii</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>2</td>
</tr>
<tr>
<td>- Taxonomic sampling</td>
<td>2</td>
</tr>
<tr>
<td>- Georeferencing</td>
<td>3</td>
</tr>
<tr>
<td>- Making distribution maps</td>
<td>4</td>
</tr>
<tr>
<td>- Species areas</td>
<td>5</td>
</tr>
<tr>
<td>Results</td>
<td>5</td>
</tr>
<tr>
<td>- Biodiversity Hotspots</td>
<td>6</td>
</tr>
<tr>
<td>Discussion</td>
<td>7</td>
</tr>
<tr>
<td>- Taxonomic issues</td>
<td>7</td>
</tr>
<tr>
<td>- Species areas</td>
<td>8</td>
</tr>
<tr>
<td>- Ocean masks</td>
<td>8</td>
</tr>
<tr>
<td>- Georeferencing</td>
<td>9</td>
</tr>
<tr>
<td>- Biases and caveats</td>
<td>10</td>
</tr>
<tr>
<td>- ArcGIS</td>
<td>11</td>
</tr>
<tr>
<td>- Biodiversity Hotspots</td>
<td>12</td>
</tr>
<tr>
<td>Conclusion</td>
<td>14</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>14</td>
</tr>
<tr>
<td>References</td>
<td>73</td>
</tr>
<tr>
<td>Internet Sites</td>
<td>77</td>
</tr>
<tr>
<td>Index</td>
<td>78</td>
</tr>
<tr>
<td>Appendices</td>
<td>1-1</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1. Number of species analyzed per family ...16
Table 2. Average area per species per family ...18
Table 3. Biodiversity hotspots ranked by species richness, with percentage of species
analyzed ..19

LIST OF FIGURES

1. Making a map of distribution of marine species in ArcGIS: Georeferenced records of a
 single species were plotted onto a map ..20
2. A minimum-bounding polygon was drawn around the points ..20
3. A layer with a mask of the ocean was used to clip out the landmasses (continents and
 islands), resulting in a complex polygon with only the marine distribution20
4. Map of species richness in the Australian Condylocardiidae (Mollusca: Bivalvia), with
 34 species ..21
5. Map of species richness in the Indo-Pacific Pinnidae (Mollusca: Bivalvia), with 8
 species ..22
6. Map of species richness in the Indo-Pacific Tridacnidae (Mollusca: Bivalvia), with 7
 species ..23
7. Map of species richness in the Indo-Pacific Bursidae (Mollusca: Gastropoda), with 20
 species ..24
8. Map of species richness in the Indo-Pacific Cassidae (Mollusca: Gastropoda), with 26
 species ..25
9. Map of species richness in the Indo-Pacific Cerithiidae (Mollusca: Gastropoda), with 45
 species ..26
10. Map of species richness in the worldwide Cypraeidae (Mollusca: Gastropoda), with
 209 Indo-Pacific species ..27
11. Map of species richness in the Indo-Pacific Dialidae (Mollusca: Gastropoda), with 6
 species ..28
12. Map of species richness in the Indo-Pacific Haliotidae (Mollusca: Gastropoda), with 51
 species ..29
14. Map of species richness in the Indo-Pacific Littorinidae (Mollusca: Gastropoda), with 49 species..31
15. Map of species richness in the Indo-Pacific Mitridae (Mollusca: Gastropoda), with 186 species..32
17. Map of species richness in the Indo-Pacific Olividae (Mollusca: Gastropoda), with 115 species..34
18. Map of species richness in the Indo-Pacific Patellidae (Mollusca: Gastropoda), with 64 species..35
20. Map of species richness in the Indo-Pacific Ranellidae (Mollusca: Gastropoda), with 48 species..37
21. Map of species richness in the Indo-Pacific Strombidae (Mollusca: Gastropoda), with 50 species..38
22. Map of species richness in the Indo-Pacific Triviidae (Mollusca: Gastropoda), with 20 species, and emphasis on the fauna of New Caledonia and Philippines.................39
23. Map of species richness in the Indo-Pacific Vasidae (Mollusca: Gastropoda), with 14 species..40
24. Map of species richness in the Indo-Pacific Ischnochitonidae and Leptochitonidae (Mollusca: Polyplacophora), with 164 species...41
25. Map of species richness in the Indo-Pacific Diogenidae (Crustacea: Decapoda), with 24 species...42
26. Map of species richness in the Indo-Pacific Dynomenidae (Crustacea: Decapoda), with 13 species..43
27. Map of species richness in the worldwide Homolidae (Crustacea: Decapoda), with Indo-Pacific 56 species, and an emphasis on the New Caledonian fauna.................44
28. Map of species richness in the Indo-Pacific Leucosiidae (Crustacea: Decapoda), with 27 species...45
29. Map of species richness in the Indo-Pacific Portunidae (Crustacea: Decapoda), with 35 species, and an emphasis on the Vietnamese fauna..46
30. Map of species richness in the Indo-Pacific Trapeziidae (Crustacea: Decapoda), with 28 species and an emphasis on the French Polynesian fauna..47
31. Map of species richness in the Vietnamese Stomatopoda (Crustacea) (11 families, including Squillidae and Gonodactilidae), with 80 species..48
32. Map of species richness in the worldwide Acroporidae (Cnidaria: Scleractinia), with 262 Indo-Pacific species..49
33. Map of species richness in the worldwide Agariciidae (Cnidaria: Scleractinia), with 43 Indo-Pacific species..50
34. Map of species richness in the worldwide Astrocoeniidae (Cnidaria: Scleractinia), with 13 Indo-Pacific species..51
35. Map of species richness in the worldwide Dendrophylliidae (Cnidaria: Scleractinia), with 14 Indo-Pacific species..52
36. Map of species richness in the Indo-Pacific Euphylliidae (Cnidaria: Scleractinia), with 14 species...53
37. Map of species richness in the worldwide Faviidae (Cnidaria: Scleractinia), with 126 Indo-Pacific species..54
38. Map of species richness in the Indo-Pacific Fungiidae (Cnidaria: Scleractinia), with 56 species..55
40. Map of species richness in the worldwide Mussidae (Cnidaria: Scleractinia), with 50 Indo-Pacific species..57
41. Map of species richness in the worldwide Oculinidae (Cnidaria: Scleractinia), with 15 Indo-Pacific species..58
42. Map of species richness in the Indo-Pacific Pectiniidae (Cnidaria: Scleractinia), with 28 species...59
43. Map of species richness in the Indo-Pacific Pocilloporidae (Cnidaria: Scleractinia),
 with 30 species...60
44. Map of species richness in the worldwide Poritidae (Cnidaria: Scleractinia), with 92
 Indo-Pacific species...61
45. Map of species richness in the worldwide Siderastreidae (Cnidaria: Scleractinia), with
 28 Indo-Pacific species..62
46. Map of the composite species richness for 794 species of corals from 18 families....63
47. Map of the composite species richness for 1166 species of mollusks from 28
 families...64
48. Map of the composite species richness for 289 Indo-Pacific species of crustaceans
 from 19 families..65
49. Map of the composite species richness for 1455 species of Indo-Pacific of mollusks
 and crustaceans from 47 families..66
50. Map of the composite species richness for 2249 species of Indo-Pacific of mollusks,
 crustaceans, and corals..67
51. Map of the composite biodiversity in the Indian Ocean, showing the species richness
 of mollusks, crustaceans, and corals..68
52. Map of the composite biodiversity in the Indo-West Pacific, showing the “coral
 triangle,” region with the highest marine biodiversity in the world......................69
53. Map of the composite biodiversity in the Indo-Pacific Ocean represented up to a
 depth of 200 m bathymetry..70
54. Map of the composite biodiversity in the Indo-West Pacific up to a depth of 200 m
 bathymetry...71
55. World map showing the location of 28,060 georeferenced records of mollusks and
 crustaceans used in this study..72
Executive Summary

As an aid to set policies and priorities for conservation of marine organisms in the Indo-Pacific region, the Bishop Museum studied the distribution of 2,249 marine invertebrates. Distributional data were obtained from museum collections and from taxonomic literature.

Over 29,000 locality records representing more than 1,100 species were gathered and georeferenced to plot species distributions on maps using a GIS program (ESRI ArcGIS 8.3). Maps for additional 1,100 species were obtained from the literature, digitized, rasterized, and added up to reveal patterns of biodiversity. The taxonomic coverage included all 794 coral species, 1,166 mollusks, and 289 crustaceans, totaling 2,249 species in the Indo-Pacific.

Composite maps of biodiversity revealed patterns of species richness that were concordant with a few exceptions. The region between the Philippines, the Malay Peninsula and New Guinea has the highest diversity of corals and is known as the “coral triangle.” From this center of diversity in the tropics there are latitudinal and longitudinal gradients, decreasing rapidly with distance from the center. Mollusks and crustaceans studied showed similar patterns of diversity, although the region of highest diversity was slightly wider than the coral triangle.

Data on threats to coral reefs were used to rank the biodiversity hotspots according to species richness and threat risk, to preserve the largest number of species concentrated in small areas. The top biodiversity hotspots are: coral triangle, Vietnam, Thailand, Micronesia, Fiji, Okinawa, Sri Lanka, Seychelles, Madagascar, Comoro and Mascarene Islands, Tanzania, Red Sea, among others.

Additional data for other organisms should be analyzed to verify if patterns are concordant in different groups and identify gaps of knowledge and ecologically important regions currently without protection.
Introduction

Since the influential article by Myers et al. (2000), the concept of “biodiversity hotspots” has been widely touted as the best strategy to prioritize conservation funds to maximize the preservation of the largest number of species. Although the “hotspot” strategy has been extremely effective at generating funding for conservation, resources are limited. Despite some recent criticism (e.g. biodiversity “coldspots” by Kareiva and Marvier, 2003), the “hotspot” strategy still seems the most sensible, because of its cost-effective measures (Myers et al., 2000). Rodrigues et al. (2004) evaluated the effectiveness of the global protected area network and suggested that it is far from ideal, but it could be enhanced if there were an expansion of protected areas where urgency for conservation action is greatest, i.e., in biodiversity hotspots not yet protected.

Coral reefs have been compared to tropical rain forests as areas of high diversity and in desperate need for conservation (Bryant et al., 1998). Roberts et al. (2002) used corals, fishes, gastropods, and lobsters to identify marine biodiversity hotspots, and concluded that about half of the species studied are concentrated in 15.8% of the world’s coral reefs. Many of these reefs are threatened, and conservation action is urgently needed.

The Tropical Indo-Pacific Ocean is the widest of all marine regions and recognized as the most diverse, particularly in the region known as “the coral triangle” or the “East Indies Triangle” (Briggs, 1996). This region is formed by the Philippines, Malay Peninsula, and New Guinea. Patterns of biodiversity both on terrestrial and marine organisms are coincident, and the peak of diversity is inside the coral triangle (Briggs, 1999). Biodiversity drops rapidly in any direction away from the triangle in longitudinal and latitudinal gradients. There is no consensus on the explanation of how this megadiversity
was achieved, either by a process of accumulation of species, overlap of different biogeographic provinces, center of origin, center of refuge, or a combination of any of the above (Bellwood and Wainwright, 2002).

The goals of this study are to produce maps of distribution of marine species using GIS to study the patterns of biodiversity in the Indo-Pacific invertebrates and then compare the patterns of distribution and diversity to identify biodiversity hotspots, as well as gaps of knowledge. Ultimately, the results from this study could provide useful information to set conservation policies.

Materials and Methods
Detailed distributional data were collected from the taxonomic literature (monographs and revisions of families or genera) and museum specimens. More than 29,000 records were gathered and georeferenced (see Georeferencing). In addition, more than 1,100 species distributions reported as maps (as opposed to points) were used for the gastropod families Cypraeidae and Olividae and all scleractinian coral species.

Taxonomic sampling
The coral distributional data were obtained from J.E.N. Veron through Conservation International, consisting of maps of distribution for 794 species of scleractinian corals, virtually all known species (as recognized by Veron, 2000), from 18 families. Crustacean data representing 289 species from 19 families were collected, including coral-associated crabs in the family Trapeziidae, as well as other crabs (e.g. Homolidae, Portunidae), hermit crabs, and stomatopods. Molluscan distribution was studied for 1,166 species from 28 families, including well-known families such as the cowries (Cypraeidae), Cassidae, Cerithiidae, Haliotidae, Littorinidae, Mitridae, Strombidae, Tridacnidae, and others (Table 1). A total of 2,249 species of marine invertebrates were used in the analysis of biodiversity hotspots in the Indo-Pacific.
Georeferencing

Localities obtained from specimen data labels or from the literature were georeferenced, i.e., latitude and longitude coordinates were found and transformed into decimal degrees. The main source for coordinates for non-U.S. localities was the GEOnet Names Server (GNS) (http://earth-info.nga.mil/gns/html/), maintained by NGA (National Geospatial-Intelligence Agency, formerly National Imagery and Mapping Agency (NIMA)). The database is continually updated; name files for countries and territories were downloaded between May and June 2003. For localities in the United States and U.S. territories, coordinates were obtained from the U.S. Geological Survey (USGS) Geographic Names Information System (GNIS) (http://geonames.usgs.gov/). Several other electronic gazetteers were also used, including a mapping tool from the Alexandria Digital Library Gazetteer Server (http://fat-albert.alexandria.ucsb.edu:8827/gazetteer/), which plots locality maps in a user-friendly interface. Additionally, maps and atlases were also used for georeferencing. Google (www.google.com) was useful in tracking down localities not found in the gazetteers mentioned above.

A few historical names were found through Google in pre-World War II documents posted on the Internet, or through the help of people familiar with historical localities in Papua New Guinea (Allen Allison (Bishop Museum) and Mary LeCroy (AMNH)). Despite our best efforts, about one thousand records (circa 3.4 % of the records) could not be used in the analysis either because of too broad locality data (e.g., Pacific Ocean or Australia), wrong or no locality data, or because the locality could not be found in maps or gazetteers.

The coordinates for more than 5,500 localities were found, in addition to some 4,800 records with coordinates from the literature and specimen labels (actual number of different localities from the literature not counted, but likely to be more than 2,000). Georeferenced records were plotted onto maps using ESRI ArcGIS 8.3 suite (Fig. 55).
Making distribution maps

For distributions reported as points (records for each collection locality, Fig. 1), a minimum-bounding polygon (“shrink-wrapping” or concave hull) was drawn by hand in ArcMap encompassing all collection points for the species (Fig. 2). When large distances separated points, e.g. a few points in East Africa and others in the Central Pacific, separate polygons were created, assuming disjunct populations (but still analyzed as one species). Ranges for subspecies were added up (as the sum of the ranges for all subspecies) to obtain the distribution of the species. Data reported as distribution maps were digitized by hand into ArcMap. Maps were represented in “unprojected” coordinate system, using the WGS1984 datum, which is close in appearance to the Plate Carree projection used in the maps in this report.

A mask of the Indo-Pacific ocean with landmasses and islands was used as a “cookie cutter” to remove landmasses from the distribution maps. The ocean mask was made using ESRI’s world basemap for continents and adding the coordinates for approximately 65,000 islands in the Indo-Pacific (coordinates obtained from all sea-bordering countries in the region, from the GEOnet Names Server website). The resulting complex polygon (Fig. 3) was then saved with the species name as an ArcGIS shapefile (e.g. marginatus.shp) and arranged in folders per family. A shapefile is a metafile composed of polygons (or points), map projection and coordinate system. Each polygon, in this case, represents the distribution of a single species.

Another ocean mask, the 200 m bathymetric mask, was made to clip out regions with depths greater than 200 m, to represent only the “shallow” water parts of the distribution. This was done because most of the species analyzed were “shallow” water benthic species. Bathymetric data was obtained from Smith and Sandwell (1977), WORLDDBATH (2000), and atlases.

Upon completion of a distribution map, it was rasterized (i.e., converted from a vector-based map to a bitmap) using a 0.5° grid (circa 55 x 55 km, or about 3,000 km²). Rasters
for each species (Appendix Figs. 1-01 to 3-2249) were then added up to calculate the species diversity per family (Figs. 4-45), and then added up to identify global hotspots of species diversity in the Indo-Pacific (Figs. 46-54).

Species areas

The minimum-bounding polygons (maps of distributions) were projected in World Cylindrical Equal Area projection, to produce distributions of comparable areas despite latitude. The species area was calculated in this projection, so that areas could be meaningfully compared. The minimum and maximum latitude and longitude of each species distribution were recorded, as well as the center of distribution. Species areas were ranked per family to identify the species with the most widely and most restricted distributions, or pandemics and endemics (sensu Hughes et al., 2002), respectively. The average area per species per family was also calculated.

Results

Maps of species richness for each family are presented in Figs. 4-45, and maps of composite biodiversity (species richness) are shown in Figs. 46-54. The maps for the following families with few species (three or less) are not shown: Actinocyclidae and Phasianellidae (Mollusca: Gastropoda), Caryophyllidae, Rhizangiidae, and Trachyphylliidae (Cnidaria: Scleractinia). Additionally, five families of polyplacophoran mollusks (Chitonidae, Chorioplacidae, Hanleyidae, Ischnochitonidae, and Leptochitonidae) were combined into a single map (Fig. 24), since three of these families had only four or fewer species represented. And finally, eleven families of stomatopod crustaceans (Eurysquillidae, Gonodactylidae, Harpiosquillidae, Heterosquillidae, Lysiosquillidae, Nannosquillidae, Odontodactylidae, Protosquillidae, Pseudosquillidae, Squillidae, Takuidae) were combined into a single map (Fig. 31) also because most of these families are represented by a small number of species.

Not surprisingly, the center of highest marine biodiversity was found in the “coral triangle” region, between the Philippines, Malay Peninsula, and New Guinea, and latitudinal and longitudinal gradients decreasing with distance from the region.
There was an overall concordance between the patterns of species diversity between corals, mollusks, and crustaceans, although the latter two taxa had the area with the highest diversity slightly wider than corals. A few families or taxa (e.g. chitons (Polyplacophora), Fig. 24) had centers of diversity in different areas (southern Australia, Northwest coast of North America, and Japan), but most families or taxa analyzed had the highest diversity in or near the coral triangle.

Table 2 shows the average area per species per family. It is notable that most crustacean families have smaller average areas than the molluscan families. The chitons (families Chitonidae, Choriplacidae, Hanleyidae, and Leptochitonidae) studied had small distributions because many species are known from few specimens. On the other hand, some families of gastropods had wide distributions, in some cases ranging from East Africa through the Indian and Pacific Oceans, and even reaching the west coast of Central America.

Biodiversity Hotspots
Most biodiversity hotspots, as defined here as regions with high species richness that are under threat by human activities (Myers et al., 2000), are located in the coral triangle (Table 3). In this analysis, the Philippines had the highest species richness, with 1,047 species (46.6% of 2,249 species) around Cebu, but high species richness occurs in most central Philippines and in islands around the deep Sulu Sea. The whole coral triangle had an average of more than 800 species (35-45% of the total number of species analyzed). This is a result of the highest biodiversity in a myriad of islands in the tropics, with highly diverse habitats, and densely populated by humans (Indonesia has the world’s fourth largest population). In addition, threats to coral reefs include widespread dynamite fishing, heavy ornamental fish collection, and pollution from human settlements.

Other hotspots near the coral triangle include Vietnam, Hainan Island (South China Sea), and Thailand (Phuket Island, Bangkok, Andaman Islands). These hotspots are also located in areas with dense human populations and anthropogenic disturbances.
Moving away from the coral triangle, other hotspots include Taiwan (especially the west coast) and Okinawa in the West Pacific, and in towards the Central Pacific there are Palau and Micronesia, Fiji, Western Samoa, and Christmas Island (Line islands, Kiribati), which has a high diversity, considering its distance from the coral triangle.

In the Western Indian Ocean, the biodiversity hotspots include Tanzania, Comoro Islands, Northern Madagascar, Mascarene Islands, and Seychelles. In the Northern Indian Ocean the biodiversity hotspots are Sri Lanka and southern India, and the Red Sea. Qatar is less diverse, but its reefs are at risk, so it was included as a hotspot.

Discussion

Taxonomic issues

No taxonomic judgment was attempted because it was beyond the scope of this project (therefore taxonomic revisions were used because they were assumed to be the most current). However, some monographs may be outdated, as evidenced by Reid (pers. comm., July 2004) in the Littorinidae. In some cases, current knowledge using molecular markers indicate that what were once considered species with wide Indo-Pacific distributions may actually consist of a number of species with narrower distributions. One difficulty is that such updated classifications are very recent or may not have been published yet, as in the case of the Littorinidae.

The validity of this model of biodiversity hotspots is not necessarily invalidated by taxonomic changes. The patterns of distribution of species may vary with the splitting or lumping of species, or discovery of new ones, but the overall patterns of diversity may change only slightly. The model can, and should, be updated and expanded to include more species to avoid bias in the distribution of certain taxa, and to become more comprehensive.
The pronounced taxonomic bias in the number of molluscan species in relation to the crustacean species is explained by one of us (F. Moretzsohn) being trained as a malacologist, and being more familiar with the molluscan than the crustacean literature.

Species areas
Species areas were overestimated because of a few factors: 1) species ranges were drawn wider than actual for visual effect. If points were represented as a point (and not a dot with a certain diameter), and minimum-bounding polygons were drawn without a buffer, some distributions would not be visible in a computer screen. 2) The suitable habitat for shallow water benthic marine invertebrates is not available in all of the range because of depth (especially in oceanic islands, where depth increases rapidly with distance from shore) and other physical and environmental factors (e.g. substrate, thermoclines, etc).

On the other hand, however, the lack of knowledge of the real distribution may underestimate the potential range of the species. One example is shallow water species that once were believed to be endemic to certain areas may also occur in deeper waters elsewhere (e.g. *Luria tessellata*, a gastropod, once considered endemic to Hawaii, has recently been found in deeper waters in Taiwan and the Philippines). Another instance where species ranges can be underestimated is the poor knowledge of the fauna (and flora) in some locations that have not been well studied. The usefulness of biodiversity models depends on the accuracy of species distribution. The inclusion of additional records and correction of errors will improve the model.

Ocean masks
ESRI ArcGIS comes with a number of basemaps (in different formats, as layers, shapefiles and rasters), such as countries and continents, elevation and bathymetry, world cities, etc., but no ocean layer was found among the datasets provided with ArcGIS 8.3. Since this project dealt with marine species, we had to build our own ocean mask, starting with a continents layer, and adding some 65,000 points for oceanic islands in the Indo-Pacific. This ocean mask was used to clip out landmasses from maps of distribution, to represent only the distribution of marine species.
Another mask, a 200 m bathymetric mask, was made to clip out from a distribution map the areas representing depths greater than 200 m. This depth was chosen because it is approximately 100 fathoms, usually the first depth reported in world bathymetric maps (although some maps report depths of 50 fms). The contour of the 200 m isobath corresponds closely the continental shelf. Also, 200 m is deep enough to encompass most of the “shallow” water benthic species. Some species that occur in shallower waters may also occur in depths deeper than 200 m.

When making the bathymetric mask, an arbitrary buffer of 20 km was added to oceanic islands, so that distributions clipped with the mask could be seen in oceanic islands. The 200 m isobath in oceanic islands is so close to the shore that is would not show up in a global scale map. In reality, the depth at a distance of 20 km from shore in most oceanic islands is probably the bottom of the ocean.

Georeferencing

Assigning geographic coordinates to old museum records is increasingly receiving a lot of attention from many museums around the world. The task is daunting because of the enormous amount of data involved--in the order of billions of natural history specimens worldwide (Krishtalka and Humphrey, 2000). Currently, georeferencing has to be done manually in most cases because of inconsistencies in recording geographical information associated with museum specimens. New tools are being developed to automate the process, but as Murphey *et al.* (2004) reviewed, we are still in the infancy of the field of “Biodiversity Informatics.”

One common problem in georeferencing of museum collections (retrospective georeferencing) is the “homonym problem,” when multiple places with the same name are found (see Murphey *et al.*, 2004). This problem was particularly common in Indonesia, Malaysia, and the Philippines, and it may be time-consuming to resolve. In one extreme case, 178 entries for San Jose village were found in the Philippines, but with additional information, the search was narrowed down to the village closest to the
Mindoro Strait. Another problem is that of synonyms, which means that a different name for the same place can be used in a database.

Another georeferencing caveat is that the coordinates reported for localities in electronic gazetteers usually refer to the center of an island, village, or geographic feature. In many cases in this study, only the island or village name was available, and it was not possible to determine the associated error to properly georeference the locality. However, because of the global scale of the patterns of biodiversity in this project, errors of a few kilometers are not important when the final maps were rasterized with a 0.5° grid (circa 55 km x 55 km grid cell). This grid cell size provided better resolution than the 2° grid cells used in Roberts et al. (2002). A finer grid could be used to reveal even more details, but because some of the distributions (especially those reported as maps, not points) may be less accurate than the grid, we decided to use a 0.5° to avoid introducing a false sense of accuracy. As field collectors increasingly use more GPS (Global Satellite Positioning) devices and record named localities more accurately, biodiversity data can be explored and analyzed with much greater resolution.

Biases and caveats

The bias in geographic sampling can be evidenced in Fig. 55, where a high density of data points is seen around Australia, New Caledonia, Japan, and the Philippines, whereas the northern Indian Ocean, and the Pacific coast of Central and South America are poorly sampled. Some of the sampling effort may be explained by the presence of centers with long research tradition (e.g. Pacific coast of North America, Japan, New Caledonia) and intense commercial fisheries (e.g. New Zealand, Japan, Peru), but biodiversity hotspots do not necessarily coincide with sampling effort. If some areas that are currently undersampled were equally sampled for biodiversity, biodiversity patterns might show a different picture and even higher diversity than currently recognized. There are gaps in the knowledge of marine diversity, and they may bias the model in the direction of areas that are well sampled. What may be seen as a weakness of the model is also one of its strengths, since the model is also useful in identifying those gaps.
An effort was made to include only data from global taxonomic reviews of families and genera. However, a few more localized works were also included, such as the stomatopod crustaceans from Vietnam (Fig. 31), or the personid gastropods with an emphasis on New Caledonia (Fig. 19), but in both cases the species reviewed had records from other regions as well. When these more localized studies were not included in the global analysis, the overall patterns of biodiversity were not changed (not shown).

ArcGIS

The GIS program used, ESRI ArcGIS is the most widely used GIS software. It is a powerful suite of programs (called extensions) that cater to a wide range of professionals. It is possible to do complex analyses, graphical representations, customizations and programming. However, the program is not user-friendly, and has a steep learning curve, despite the good technical support and online courses available. The program is also very expensive and may be out of reach for many institutions; each “extension” has to be purchased separately to obtain the appropriate functionality.

We had a long learning process to get the program to do the necessary calculations, rasterizations, and other steps involved in the analyses. Fortunately we had help from other people more familiar with the program and technical support from ESRI. Despite all the help and tips from technical support and a user forum, we could not perform a few functions, such as changing the projection of a raster, or making a raster of the world map to be represented with the Indo-Pacific in the center. For this reason, the species richness maps (Figs. 4-51), made from rasters, are shown with Greenwich as the central meridian, while the species distribution maps (see appendices), made from shapefiles, could be represented with the Indo-Pacific in the center.

Another problem encountered was the coral dataset, which was produced by another group (Conservation International). Until very late, we had problems with the projection and extension (coordinates of the bounding box of the map), and we could not project the coral layers and rasters in the same map with other layers (mollusks and crustaceans).
Finally, one of us (M. McShane) learned how to manipulate the coral data in a way that we were able analyze them together with the other datasets.

Biodiversity Hotspots

Based on the data used in this study, the region of overall highest diversity in mollusks and crustaceans extends slightly beyond the coral triangle. The implications of these patterns include a concern to also protect areas outside of the coral triangle, since other animals (and plants) may also have similar broader hotspots than corals. Each group analyzed has slight variations in the patterns of biodiversity, but overall there is a good concordance with the global patterns of global biodiversity (Fig. 46; Veron, 2000), therefore it is useful to refer to the coral triangle as the main hotspot of marine invertebrate biodiversity.

A few groups, such as the chitons (mostly families Ischnochitonidae and Leptochitonidae, Fig. 24), have a different pattern of biodiversity, and the highest species richness were found in Southern Australia, Pacific coast of North America, Japan, and South Africa, which bears similarities with marine algae (A. Kerswell, pers. comm., July 2004). This could be explained by some families or groups having a more temperate distribution, in contrast with the predominantly tropical distribution in most groups studied here.

The term “biodiversity hotspots” was coined by Myers in 1988 and became very common since the important article by Myers *et al.* (2000). The original meaning of biodiversity hotspot is a combination of both an area with high species endemism and degree of threat. The latter is difficult to measure, because of the subjective component on how to evaluate the hazards (Kareiva and Marvier, 2003). To compound the problem, marine biodiversity and the threats are even less understood in than in terrestrial habitats. Since there seems to be a good correlation between coral reef and invertebrate biodiversity, and the threats to corals are better documented (Bryant *et al.*, 1998) than threats to other invertebrates, we followed a similar approach as Roberts *et al.* (2002) and used the mapped coral threats of Bryant *et al.* (1998) to assess threats to invertebrates in general.
In general, biodiversity hotspots correspond to regions with high species richness in the tropics, which are usually more densely populated by humans and associated anthropogenic problems.

Kareiva and Marvier (2003) coined the term biodiversity “coldspots”, to represent the vast majority of places which are not biodiversity hotspots. The authors present good arguments for not investing only in the hotspot strategy, but rather also protect certain regions with low species diversity but which have special ecological significance, such as the Artic, the Serengeti, or wetlands. In the case of marine species, based on this study we could list some places like the Galapagos Island, Easter Island, and New Zealand, all of which have relatively low species richness, but have high proportion of endemic species, and should be considered among the priorities for conservation. Some regions with high biodiversity were not included in Table 3 because they are either not under threat or are properly protected (e.g. the Great Barrier Reef in Australia).

A recent study by Rodrigues et al. (2004) based on terrestrial and freshwater vertebrates (mammals, birds, turtles, and amphibians) reviewed the effectiveness of the global protected area network. Despite the fact that 11.5% of the world’s landmasses are protected, gap analysis suggests that at least 12% of the species studied are not represented in any protected areas. Expansion of the protected area network should cover biodiversity hotspots not currently protected, such as montane or insular regions in the tropics. The study also recognizes that the analysis was done only with vertebrates, and invertebrates may have different patterns of endemism. The study did not mention, however, marine protected areas (MPAs) and the need for conservation, especially in coral reefs and other biodiversity hotspots. We suggest that a similar study in the marine protected areas would be a worthy endeavor to review their efficiency and to identify gaps.
Conclusions
More than half of the world’s reefs are at risk from anthropogenic activities (Bryant et al., 1998), and many crustacean and molluscan biodiversity hotspots coincide with coral reef hotspots, usually in tropical areas near highly concentrated humans.

Benthic marine invertebrates with restricted ranges are potentially more vulnerable to habitat degradation than widely spread species. Biodiversity hotspots should be urgently protected, but areas with high incidence of restricted-range species should also receive high priority to preserve unique genotypes.

Additional data (for example on fish distributions, more crustaceans and other groups) would provide valuable information and contribute to make more sound analyses. Also, a gap analysis of marine species and evaluation of the efficiency of the marine protected area network should be done to identify areas currently not protected.

Acknowledgments
We are grateful for the generous financial support by the John D. and Catherine T. MacArthur Foundation. We thank David Hulse, of the Foundation, for his interest in this project. We are indebted to Allen Allison, Lu Eldredge, and Steve Coles (Bishop Museum) for discussion and guidance, and for providing literature. Our appreciation also goes out to Crystal Dorn and Royce Jones (ESRI, Honolulu branch) for their technical support with the ArcView program. We also thank Brad Evans (Bishop Museum) for GIS support and mapping suggestions and Brian Steves (Smithsonian Environmental Research Center) for writing a VBA macro for ArcMap that helped save countless hours. Discussions at the 10th International Coral Reef Symposium, Okinawa, greatly contributed to this report; we thank the following researchers for discussion and suggestions: David Reid (Natural History Museum (British Museum)), Ailsa Kerswell (James Cook University), Timothy Werner and Gerald Allen (Conservation International), and Sergio Floeter (University of California at Santa Barbara). Allen Allison (Bishop Museum) and Mary LeCroy (American Museum of Natural History)
assisted with historical locality names in Papua New Guinea, and Tracie Mackenzie (Bishop Museum) was fundamental in keeping us organized and on track.
Table 1. Number of species analyzed per family

<table>
<thead>
<tr>
<th>Phylum or Subphylum</th>
<th>Subclass or Order</th>
<th>Family</th>
<th>No. species</th>
<th>No. records</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mollusca Bivalvia</td>
<td></td>
<td>Condylocardiidae</td>
<td>34</td>
<td>771</td>
</tr>
<tr>
<td>Mollusca Bivalvia</td>
<td></td>
<td>Pinnidae</td>
<td>8</td>
<td>231</td>
</tr>
<tr>
<td>Mollusca Bivalvia</td>
<td></td>
<td>Tridacnidae</td>
<td>7</td>
<td>451</td>
</tr>
<tr>
<td>Mollusca Bivalvia</td>
<td></td>
<td>Actinocyclidae</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>Mollusca Gastropoda</td>
<td></td>
<td>Bursidae</td>
<td>20</td>
<td>570</td>
</tr>
<tr>
<td>Mollusca Gastropoda</td>
<td></td>
<td>Cassidae</td>
<td>26</td>
<td>705</td>
</tr>
<tr>
<td>Mollusca Gastropoda</td>
<td></td>
<td>Cerithiidae</td>
<td>45</td>
<td>3,694</td>
</tr>
<tr>
<td>Mollusca Gastropoda</td>
<td></td>
<td>Cypraeidae</td>
<td>209</td>
<td>552 + maps</td>
</tr>
<tr>
<td>Mollusca Gastropoda</td>
<td></td>
<td>Dialidae</td>
<td>6</td>
<td>1,376</td>
</tr>
<tr>
<td>Mollusca Gastropoda</td>
<td></td>
<td>Haliotidae</td>
<td>51</td>
<td>3,717</td>
</tr>
<tr>
<td>Mollusca Gastropoda</td>
<td></td>
<td>Harpidae</td>
<td>15</td>
<td>529</td>
</tr>
<tr>
<td>Mollusca Gastropoda</td>
<td></td>
<td>Littorinidae</td>
<td>49</td>
<td>2,332</td>
</tr>
<tr>
<td>Mollusca Gastropoda</td>
<td></td>
<td>Mitridae</td>
<td>186</td>
<td>4,752</td>
</tr>
<tr>
<td>Mollusca Gastropoda</td>
<td></td>
<td>Muricidae</td>
<td>9</td>
<td>825</td>
</tr>
<tr>
<td>Mollusca Gastropoda</td>
<td></td>
<td>Olividae</td>
<td>115</td>
<td>Maps</td>
</tr>
<tr>
<td>Mollusca Gastropoda</td>
<td></td>
<td>Patellidae</td>
<td>64</td>
<td>601</td>
</tr>
<tr>
<td>Mollusca Gastropoda</td>
<td></td>
<td>Personidae</td>
<td>15</td>
<td>351</td>
</tr>
<tr>
<td>Mollusca Gastropoda</td>
<td>Polyplacophora</td>
<td>Phasianellidae</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>Mollusca Gastropoda</td>
<td>Polyplacophora</td>
<td>Ranellidae</td>
<td>48</td>
<td>1,518</td>
</tr>
<tr>
<td>Mollusca Gastropoda</td>
<td>Polyplacophora</td>
<td>Strombidae</td>
<td>50</td>
<td>1,522</td>
</tr>
<tr>
<td>Mollusca Gastropoda</td>
<td>Polyplacophora</td>
<td>Triviidae</td>
<td>20</td>
<td>242</td>
</tr>
<tr>
<td>Mollusca Gastropoda</td>
<td>Polyplacophora</td>
<td>Trochidae</td>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td>Mollusca Gastropoda</td>
<td>Polyplacophora</td>
<td>Vasidae</td>
<td>14</td>
<td>114</td>
</tr>
<tr>
<td>Mollusca Polyplacophora</td>
<td>Polyplacophora</td>
<td>Chitonidae</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mollusca Polyplacophora</td>
<td>Polyplacophora</td>
<td>Choriplacidae</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mollusca Polyplacophora</td>
<td>Polyplacophora</td>
<td>Hanleyida</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Mollusca Polyplacophora</td>
<td>Polyplacophora</td>
<td>Ischnochitonidae</td>
<td>124</td>
<td>459</td>
</tr>
<tr>
<td>Mollusca Polyplacophora</td>
<td>Polyplacophora</td>
<td>Leptochitonidae</td>
<td>34</td>
<td>114</td>
</tr>
<tr>
<td>Crustacea Decapoda</td>
<td></td>
<td>Diogenidae</td>
<td>24</td>
<td>205</td>
</tr>
<tr>
<td>Crustacea Decapoda</td>
<td></td>
<td>Dynomenidae</td>
<td>13</td>
<td>274</td>
</tr>
<tr>
<td>Crustacea Decapoda</td>
<td></td>
<td>Homolidae</td>
<td>56</td>
<td>728</td>
</tr>
<tr>
<td>Crustacea Decapoda</td>
<td></td>
<td>Homolodromiidae</td>
<td>20</td>
<td>48</td>
</tr>
<tr>
<td>Crustacea Decapoda</td>
<td></td>
<td>Leucosidae</td>
<td>27</td>
<td>105</td>
</tr>
<tr>
<td>Crustacea Decapoda</td>
<td></td>
<td>Portunidae</td>
<td>35</td>
<td>656</td>
</tr>
<tr>
<td>Crustacea Decapoda</td>
<td></td>
<td>Rhynchocinetidae</td>
<td>6</td>
<td>77</td>
</tr>
<tr>
<td>Crustacea Decapoda</td>
<td></td>
<td>Trapeziidae</td>
<td>28</td>
<td>655</td>
</tr>
<tr>
<td>Crustacea Stomatopoda</td>
<td></td>
<td>Euryxquillidae</td>
<td>5</td>
<td>41</td>
</tr>
<tr>
<td>Crustacea Stomatopoda</td>
<td></td>
<td>Gonodactylidae</td>
<td>21</td>
<td>243</td>
</tr>
<tr>
<td>Crustacea Stomatopoda</td>
<td></td>
<td>Harpiosquillidae</td>
<td>5</td>
<td>59</td>
</tr>
<tr>
<td>Crustacea Stomatopoda</td>
<td></td>
<td>Heterosquillidae</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Crustacea Stomatopoda</td>
<td></td>
<td>Lysiosquillidae</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>Crustacea Stomatopoda</td>
<td></td>
<td>Nannosquillidae</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>Crustacea Stomatopoda</td>
<td></td>
<td>Odontodactylidae</td>
<td>2</td>
<td>39</td>
</tr>
<tr>
<td>Crustacea Stomatopoda</td>
<td></td>
<td>Protosquillidae</td>
<td>6</td>
<td>74</td>
</tr>
<tr>
<td>Crustacea Stomatopoda</td>
<td></td>
<td>Pseudosquillidae</td>
<td>2</td>
<td>20</td>
</tr>
</tbody>
</table>
Table 1 (cont.). Number of species analyzed per family

<table>
<thead>
<tr>
<th>Phylum or Subphylum</th>
<th>Subclass or Order</th>
<th>Family</th>
<th>No. species</th>
<th>No. records</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crustacea</td>
<td>Stomatopoda</td>
<td>Squillidae</td>
<td>31</td>
<td>260</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Stomatopoda</td>
<td>Takuidae</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Cnidaria</td>
<td>Scleractinia</td>
<td>Acroporidae</td>
<td>262</td>
<td>Maps</td>
</tr>
<tr>
<td>Cnidaria</td>
<td>Scleractinia</td>
<td>Agariciidae</td>
<td>43</td>
<td>Maps</td>
</tr>
<tr>
<td>Cnidaria</td>
<td>Scleractinia</td>
<td>Astrocoeniidae</td>
<td>13</td>
<td>Maps</td>
</tr>
<tr>
<td>Cnidaria</td>
<td>Scleractinia</td>
<td>Caryophyllidae</td>
<td>1</td>
<td>Map</td>
</tr>
<tr>
<td>Cnidaria</td>
<td>Scleractinia</td>
<td>Dendrophyllidae</td>
<td>14</td>
<td>Maps</td>
</tr>
<tr>
<td>Cnidaria</td>
<td>Scleractinia</td>
<td>Euphyllica</td>
<td>14</td>
<td>Maps</td>
</tr>
<tr>
<td>Cnidaria</td>
<td>Scleractinia</td>
<td>Faviidae</td>
<td>126</td>
<td>Maps</td>
</tr>
<tr>
<td>Cnidaria</td>
<td>Scleractinia</td>
<td>Fungiidae</td>
<td>56</td>
<td>Maps</td>
</tr>
<tr>
<td>Cnidaria</td>
<td>Scleractinia</td>
<td>Merulinidae</td>
<td>13</td>
<td>Maps</td>
</tr>
<tr>
<td>Cnidaria</td>
<td>Scleractinia</td>
<td>Mussidae</td>
<td>50</td>
<td>Maps</td>
</tr>
<tr>
<td>Cnidaria</td>
<td>Scleractinia</td>
<td>Oculinidae</td>
<td>15</td>
<td>Maps</td>
</tr>
<tr>
<td>Cnidaria</td>
<td>Scleractinia</td>
<td>Pectiniidae</td>
<td>28</td>
<td>Maps</td>
</tr>
<tr>
<td>Cnidaria</td>
<td>Scleractinia</td>
<td>Pocilloporidae</td>
<td>30</td>
<td>Maps</td>
</tr>
<tr>
<td>Cnidaria</td>
<td>Scleractinia</td>
<td>Poritidae</td>
<td>92</td>
<td>Maps</td>
</tr>
<tr>
<td>Cnidaria</td>
<td>Scleractinia</td>
<td>Rhizangiidae</td>
<td>1</td>
<td>Map</td>
</tr>
<tr>
<td>Cnidaria</td>
<td>Scleractinia</td>
<td>Siderastreidae</td>
<td>28</td>
<td>Maps</td>
</tr>
<tr>
<td>Cnidaria</td>
<td>Scleractinia</td>
<td>Trachyphyllida</td>
<td>1</td>
<td>Map</td>
</tr>
</tbody>
</table>
Table 2. Average area per species per family

<table>
<thead>
<tr>
<th>Group</th>
<th>Family</th>
<th>No. species</th>
<th>Ave. area per family (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mollusca</td>
<td>Choriplacidae</td>
<td>1</td>
<td>49,846</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Phasianellidae</td>
<td>3</td>
<td>305,245</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Harpiosquillidae</td>
<td>2</td>
<td>353,526</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Trochidae</td>
<td>6</td>
<td>488,710</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Leptochitonidae</td>
<td>34</td>
<td>564,019</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Homolodromiidae</td>
<td>20</td>
<td>668,849</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Ischnochitonidae</td>
<td>124</td>
<td>681,146</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Condylocardiidae</td>
<td>34</td>
<td>712,616</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Hanleyidae</td>
<td>4</td>
<td>785,638</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Pseudosquillidae</td>
<td>2</td>
<td>899,823</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Protosquillidae</td>
<td>6</td>
<td>1,174,057</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Lysiosquillidae</td>
<td>3</td>
<td>1,438,894</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Harpiosquillidae</td>
<td>4</td>
<td>1,540,088</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Squillidae</td>
<td>31</td>
<td>1,569,187</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Odontodactylidae</td>
<td>2</td>
<td>2,678,178</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Eury squillidae</td>
<td>5</td>
<td>3,412,059</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Leucosiidae</td>
<td>27</td>
<td>3,839,367</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Nannosquillidae</td>
<td>3</td>
<td>3,843,038</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Triviidae</td>
<td>20</td>
<td>3,895,646</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Gonodactylidae</td>
<td>21</td>
<td>4,129,435</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Patellidae</td>
<td>64</td>
<td>4,607,442</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Homolidae</td>
<td>56</td>
<td>5,162,797</td>
</tr>
<tr>
<td>Mollusca</td>
<td>V asidae</td>
<td>14</td>
<td>9,181,469</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Diogenidae</td>
<td>24</td>
<td>9,532,729</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Haliotidae</td>
<td>51</td>
<td>11,646,896</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Trapezizidae</td>
<td>28</td>
<td>13,373,022</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Personidae</td>
<td>15</td>
<td>14,149,459</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Olividae</td>
<td>115</td>
<td>15,153,911</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Cassidae</td>
<td>26</td>
<td>16,422,949</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Littorinidae</td>
<td>49</td>
<td>19,136,029</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Harpidae</td>
<td>15</td>
<td>20,025,604</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Bursidae</td>
<td>20</td>
<td>22,561,427</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Cypraeidae</td>
<td>225</td>
<td>27,186,885</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Actinocyclidae</td>
<td>2</td>
<td>27,286,979</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Dynomenidae</td>
<td>13</td>
<td>28,472,084</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Rhynchocinetidae</td>
<td>6</td>
<td>29,048,670</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Mitridae</td>
<td>186</td>
<td>31,088,110</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Strombidae</td>
<td>40</td>
<td>33,115,270</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Portunidae</td>
<td>35</td>
<td>33,846,663</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Ranellidae</td>
<td>48</td>
<td>34,053,758</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Cerithiidae</td>
<td>46</td>
<td>40,429,466</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Tridacnidae</td>
<td>6</td>
<td>45,670,473</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Dialidae</td>
<td>6</td>
<td>46,763,142</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Pinnidae</td>
<td>8</td>
<td>51,313,100</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Muricidae</td>
<td>9</td>
<td>64,834,406</td>
</tr>
</tbody>
</table>
Table 3. Biodiversity hotspots ranked by species richness, with percentage of species analyzed

<table>
<thead>
<tr>
<th>Biodiversity Hotspot location</th>
<th>No. species</th>
<th>% species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philippines - Sulu Sea and central region</td>
<td>1047</td>
<td>46.6</td>
</tr>
<tr>
<td>Malaysia - NE Borneo</td>
<td>1000</td>
<td>44.5</td>
</tr>
<tr>
<td>Indonesia - Celebes, Ceram</td>
<td>985</td>
<td>43.8</td>
</tr>
<tr>
<td>Indonesia - Banda Sea</td>
<td>940</td>
<td>41.8</td>
</tr>
<tr>
<td>Indonesia - Java Sea, Timor, Bali</td>
<td>928</td>
<td>41.3</td>
</tr>
<tr>
<td>Indonesia - Mentawai Is.</td>
<td>889</td>
<td>39.5</td>
</tr>
<tr>
<td>Papua New Guinea - SE</td>
<td>800</td>
<td>35.6</td>
</tr>
<tr>
<td>East Vietnam</td>
<td>713</td>
<td>31.7</td>
</tr>
<tr>
<td>Micronesia</td>
<td>700</td>
<td>31.1</td>
</tr>
<tr>
<td>Fiji</td>
<td>697</td>
<td>31.0</td>
</tr>
<tr>
<td>Okinawa</td>
<td>684</td>
<td>30.4</td>
</tr>
<tr>
<td>Palau</td>
<td>614</td>
<td>27.3</td>
</tr>
<tr>
<td>Thailand - Phuket</td>
<td>597</td>
<td>26.5</td>
</tr>
<tr>
<td>Mascarene Is.</td>
<td>571</td>
<td>25.4</td>
</tr>
<tr>
<td>Comoro Is.</td>
<td>566</td>
<td>25.2</td>
</tr>
<tr>
<td>Sri Lanka - South India</td>
<td>560</td>
<td>24.9</td>
</tr>
<tr>
<td>Seychelles</td>
<td>550</td>
<td>24.5</td>
</tr>
<tr>
<td>Madagascar - North coast</td>
<td>550</td>
<td>24.5</td>
</tr>
<tr>
<td>Andaman Is.</td>
<td>535</td>
<td>23.8</td>
</tr>
<tr>
<td>Western Samoa</td>
<td>482</td>
<td>21.4</td>
</tr>
<tr>
<td>Tanzania</td>
<td>472</td>
<td>21.0</td>
</tr>
<tr>
<td>Southern Red Sea</td>
<td>450</td>
<td>20.0</td>
</tr>
<tr>
<td>West Taiwan</td>
<td>405</td>
<td>18.0</td>
</tr>
<tr>
<td>Thailand - Bangkok</td>
<td>395</td>
<td>17.6</td>
</tr>
<tr>
<td>China – Hainan Is.</td>
<td>335</td>
<td>14.9</td>
</tr>
<tr>
<td>Christmas Is.</td>
<td>192</td>
<td>8.5</td>
</tr>
<tr>
<td>Qatar</td>
<td>151</td>
<td>6.7</td>
</tr>
</tbody>
</table>
Figure 4
Phylum Mollusca, Class Bivalvia

Family Condylocardiidae

Reference: modified from Middelfart, 2002A & B

34 Australian species

Species Richness

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Family Pinnidae

Phylum Mollusca, Class Bivalvia

8 Indo-Pacific species

Reference: modified from Rosewater, 1961

Species Richness

1 2 3 4 5 6
Figure 6
Phylum Mollusca, Class Bivalvia

Family Tridacnidae

Reference: modified from Rosewater, 1965

7 Indo-Pacific species
Figure 7
Phylum Mollusca, Class Gastropoda

Family Bursidae

Reference: modified from Beu, 1998

20 Indo-Pacific species

Species Richness

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Figure 8
Phylum Mollusca, Class Gastropoda

Family Cassidae

Reference: modified from Abbott, 1968

26 Indo-Pacific species

Species Richness

1 2 3 4 5 6 7 8 9
Figure 9
Phylum Mollusca, Class Gastropoda

Family Cerithiidae

Referenced: modified from Houbrick, 1992

45 Indo-Pacific species

Species Richness

1-3 □ 4-7 □ 8-11 □ 12-14 □ 15-18 □ 19-22 □ 23-26 □ 27-31 □
Figure 10
Phylum Mollusca, Class Gastropoda

Family Cypreaeidae

References: Burgess, 1985; Lorenz & Hubert, 2000

209 Indo-Pacific species

Species Richness

- 1-7
- 8-19
- 20-33
- 34-45
- 46-55
- 56-62
- 63-70
- 71-87
Figure 11
Phylum Mollusca, Class Gastropoda

Family Dialidae

References: modified from Ponder & Keyser, 1992
6 Indo-Pacific species

Species Richness

- 1
- 2
- 3
- 4
Figure 12
Phylum Mollusca, Class Gastropoda

Family Haliotidae

References: modified from Geiger, 2000

51 Indo-Pacific species

Species Richness

World Plate Carree, WGS 1984
ESRI ArcMap 8.3
F. Moretzsohn, Bishop Museum, 2004
Figure 13
Phylum Mollusca, Class Gastropoda

Family Harpidae

References: modified from Rehder, 1973
15 Indo-Pacific species
Figure 14
Phylum Mollusca, Class Gastropoda

Family Littorinidae

References: Rosewater 1970, 1972; Reid, 1986
49 Indo-Pacific species
Figure 15
Phylum Mollusca, Class Gastropoda

Family Mitridae

References: modified from Cernohorsky, 1976, 1991

186 Indo-Pacific species

Species Richness

1-9
10-22
23-37
38-52
53-64
65-75
76-88
89-106
Figure 16
Phylum Mollusca, Class Gastropoda
Family Muricidae (Genus Drupa only)

Reference: modified from Emerson and Cernohorsky, 1973

9 Indo-Pacific species

Species Richness
Figure 17
Phylum Mollusca, Class Gastropoda

Family Olividae

Reference: modified from Petuch & Sargent, 1986

115 Indo-Pacific species
Figure 18
Phylum Mollusca, Class Gastropoda

Family Patellidae

Reference: modified from Powell, 1973
64 Indo-Pacific species
Figure 19
Phylum Mollusca, Class Gastropoda

Family Personidae

Reference: modified from Beu, 1998

15 Indo-Pacific species

Species Richness
Figure 20
Phylum Mollusca, Class Gastropoda

Family Ranellidae

48 Indo-Pacific species

Species Richness:
- 1-3
- 4-8
- 9-12
- 13-16
- 17-20
- 21-24
- 25-29
- 30-36

Reference: modified from Beu, 1998
Figure 21
Phylum Mollusca, Class Gastropoda

Family Strombidae

Reference: modified from Abbott, 1961

50 Indo-Pacific species

Species Richness

<table>
<thead>
<tr>
<th>Range</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>Light gray</td>
</tr>
<tr>
<td>4-6</td>
<td>Gray</td>
</tr>
<tr>
<td>7-10</td>
<td>Light gray</td>
</tr>
<tr>
<td>11-14</td>
<td>Gray</td>
</tr>
<tr>
<td>15-17</td>
<td>Dark gray</td>
</tr>
<tr>
<td>18-20</td>
<td>Very dark gray</td>
</tr>
<tr>
<td>21-24</td>
<td>Black</td>
</tr>
<tr>
<td>25-29</td>
<td>Black</td>
</tr>
</tbody>
</table>

World Plate Carree, WGS 1984
ESRI ArcMap 8.3
F. Moretzsohn, Bishop Museum, 2004
Figure 22
Phylum Mollusca, Class Gastropoda
Family Triviidae

Reference: modified from Dolin, 2001

20 Indo-Pacific species
Figure 23
Phylum Mollusca, Class Gastropoda

Family Vasidae

Reference: modified from Abbott, 1959
14 Indo-Pacific species
Figure 24
Phylum Mollusca, Class Polyplacophora

Families Ischnochitonidae and Leptochoitidae

Reference: Kaas & Van Belle, 1985A & B
164 Indo-Pacific species

Species Richness

<table>
<thead>
<tr>
<th>1</th>
<th>2-4</th>
<th>5-9</th>
<th>10-14</th>
<th>15-22</th>
</tr>
</thead>
</table>

World Plate Carree, WGS 1984
ESRI ArcMap 8.3
F. Moretzsohn, Bishop Museum, 2004
Figure 25
Subphylum Crustacea, Order Decapoda
Family Diogenidae

Reference: modified from Forest, 1995
24 Indo-Pacific species

Species Richness

- 1
- 2
- 3
- 4
- 5
Figure 26
Subphylum Crustacea, Order Decapoda

Family Dynomenidae

Reference: modified from McLay, 1999

13 Indo-Pacific species
Figure 27
Subphylum Crustacea, Order Decapoda

Family Homolidae

Reference: Guinot & Richer de Forges, 1995

56 Indo-Pacific species
Figure 28
Subphylum Crustacea, Order Decapoda

Family Leucosiidae

Reference: modified from Tan and Ng, 1995

27 Indo-Pacific species

Species Richness

1 2 3 4 5 6 7
Figure 29
Subphylum Crustacea, Order Decapoda
Family Portunidae

Reference: modified from Wee and Ng, 1995

35 Indo-Pacific species

Species Richness

- 1-4
- 5-9
- 10-13
- 14-17
- 18-21
- 22-24
- 25-28
- 29-35

World Plate Carree, WGS 1984
ESRI ArcMap 8.3
F. Moretzsohn, Bishop Museum, 2004
Figure 30
Subphylum Crustacea, Order Decapoda
Family Trapeziidae

Reference: modified from Castro, 1997

28 Indo-Pacific species

Species Richness

- 1-2
- 3-4
- 5-6
- 7-9
- 10-12
- 13-14
- 15-16
- 17-20
Figure 31
Subphylum Crustacea, Order Stomatopoda
11 Families (incl. Squillidae and Gonodactylidae)

Reference: modified from Manning, 1995
80 Indo-Pacific species
Family Acroporidae

Species Richness

Reference: modified from Veron, 2000

262 Indo-Pacific species
Figure 33
Phylum Cnidaria, Order Scleractinia

Family Agariciidae

Reference: modified from Veron, 2000

43 Indo-Pacific species

Species Richness

<table>
<thead>
<tr>
<th>Value</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 6</td>
<td></td>
</tr>
<tr>
<td>7 - 12</td>
<td></td>
</tr>
<tr>
<td>13 - 18</td>
<td></td>
</tr>
<tr>
<td>19 - 21</td>
<td></td>
</tr>
<tr>
<td>22 - 24</td>
<td></td>
</tr>
<tr>
<td>25 - 28</td>
<td></td>
</tr>
<tr>
<td>29 - 32</td>
<td></td>
</tr>
</tbody>
</table>
Figure 34
Phylum Cnidaria, Order Scleractinia

Family Astrocoeniidae

Reference: modified from Veron, 2000

13 Indo-Pacific species

World Plate Carrée, WGS 1984
ESRI ArcMap 8.3
M.K.K. McShane, Bishop Museum, 2004
Figure 35
Phylum Cnidaria, Order Scleractinia

Family Dendrophylliidae

Reference: modified from Veron, 2000

14 Indo-Pacific species

Species Richness

- 1 - 4
- 5 - 6
- 7 - 8
- 9 - 10
- 11 - 12
Figure 36
Phylum Cnidaria, Order Scleractinia

Family Euphylliidae

14 Indo-Pacific species

Reference: modified from Veron, 2000

Species Richness

- 1 - 2
- 3 - 5
- 6 - 7
- 8 - 10
- 11 - 13

World Plate Carrée, WGS 1984
ESRI ArcMap 8.3
M.K.K. McShane, Bishop Museum, 2004
Figure 37
Phylum Cnidaria, Order Scleractinia
Family Faviidae

Species Richness
1 - 7 8 - 18 19 - 30 31 - 42 43 - 54 55 - 64 65 - 72 73 - 84 85 - 93

Reference: modified from Veron, 2000

126 Indo-Pacific species
Species Richness

- 1 - 5
- 6 - 11
- 12 - 19
- 20 - 26
- 27 - 32
- 33 - 39
- 40 - 46

Figure 38
Phylum Cnidaria, Order Scleractinia
Family Fungiidae

Reference: modified from Veron, 2000

World Plate Carree, WGS 1984
ESRI ArcMap 8.3
M.K.K. McShane, Bishop Museum, 2004
Figure 39
Phylum Cnidaria, Order Scleractinia
Family Merulinidae

Reference: modified from Veron, 2000
13 Indo-Pacific species

Species Richness

- Light grey: 1 - 2
- Light grey: 3 - 4
- Grey: 5 - 6
- Dark grey: 7 - 8
- Black: 9 - 10

World Plate Carree, WGS 1984
ESRI ArcMap 8.3
M.K.K. McShane, Bishop Museum, 2004
Figure 40
Phylum Cnidaria, Order Scleractinia

Family Mussidae

Species Richness

- 1 - 3
- 4 - 7
- 8 - 11
- 12 - 14
- 15 - 18
- 19 - 22
- 23 - 26
- 27 - 30
- 31 - 34

Reference: modified from Veron, 2000

50 Indo-Pacific species
Figure 41
Phylum Cnidaria, Order Scleractinia
Family Oculinidae

Reference: modified from Veron, 2000
15 Indo-Pacific species

Species Richness

- 1 - 2
- 3 - 5
- 6 - 8
Figure 42
Phylum Cnidaria, Order Scleractinia

Family Pectiniidae

Reference: modified from Veron, 2000

28 Indo-Pacific species

Species Richness

<table>
<thead>
<tr>
<th>Range</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>1 - 2</td>
</tr>
<tr>
<td>3-5</td>
<td>3 - 5</td>
</tr>
<tr>
<td>6-8</td>
<td>6 - 8</td>
</tr>
<tr>
<td>9-10</td>
<td>9 - 10</td>
</tr>
<tr>
<td>11-13</td>
<td>11 - 13</td>
</tr>
<tr>
<td>14-16</td>
<td>14 - 16</td>
</tr>
<tr>
<td>17-19</td>
<td>17 - 19</td>
</tr>
<tr>
<td>20-21</td>
<td>20 - 21</td>
</tr>
<tr>
<td>22-24</td>
<td>22 - 24</td>
</tr>
</tbody>
</table>
Figure 43
Phylum Cnidaria, Order Scleractinia
Family Pocilloporidae

Reference: modified from Veron, 2000

30 Indo-Pacific species

Species Richness

1 - 2 3 - 4 5 - 6 7 - 8 9 - 10 11 - 12 13 - 14 15 16 - 18
Figure 44
Phylum Cnidaria, Order Scleractinia
Family Poritidae

Reference: modified from Veron, 2000

92 Indo-Pacific species

Species Richness:
- 1 - 4
- 5 - 11
- 12 - 20
- 21 - 28
- 29 - 33
- 34 - 38
- 39 - 46
- 47 - 54
- 55 - 60
Figure 45
Phylum Cnidaria, Order Scleractinia

Family Siderastreidae

28 Indo-Pacific species

Reference: modified from Veron, 2000
Figure 46
Phylum Cnidaria, Order Scleractinia

18 Families

794 Indo-Pacific species

Species Richness

- 1 - 36
- 37 - 108
- 109 - 182
- 183 - 245
- 246 - 311
- 312 - 361
- 362 - 415
- 416 - 500
- 501 - 561

World Plate Carree, WGS 1984
ESRI ArcMap 8.3
M.K.K. McShane, Bishop Museum, 2004
Figure 47
Phylum Mollusca

28 Families

1166 species

Species Richness

- 1-34
- 35-93
- 94-150
- 151-196
- 197-238
- 239-283
- 284-334
- 335-426
Figure 48
Subphylum Crustacea

19 Families

289 Indo-Pacific species

Species Richness

- 1-8
- 9-18
- 19-27
- 28-36
- 27-44
- 45-55
- 56-72
- 73-95
Figure 49
Mollusca + Crustacea

47 Families

1455 Indo-Pacific species

Species Richness

- 1-33
- 34-92
- 93-154
- 155-213
- 214-267
- 268-321
- 322-380
- 381-489
Figure 50 - Composite map of biodiversity
Mollusks, Crustaceans, and Corals

65 Families

2249 Indo-Pacific species

Species Richness

- 1 - 71
- 72-184
- 185-302
- 303-435
- 436-573
- 574-682
- 683-774
- 775-889
- 890-1,047

World Plate Carree, WGS 1984
ESRI ArcMap 8.3
M.K.K.McShane, Bishop Museum, 2004
Figure 51 - Hotspots of biodiversity in the Indian Ocean
Mollusks, Crustaceans, and Corals

65 Families

2249 Indo-Pacific species

Species Richness

Value: 1-71, 72-184, 185-302, 303-435, 436-573, 574-682, 683-774, 775-889, 890-1,047
Figure 52 - Hotspots of biodiversity in the Indo-West Pacific Mollusks, Crustaceans, and Corals

65 Families

2249 Indo-Pacific species

Species Richness

Value

1-71
72-184
185-302
303-435
436-573
574-682
683-774
775-889
890-1,047
Figure 53 - Composite map of biodiversity up to 200 m
Mollusks, Crustaceans, and Corals
65 Families

Species Richness

- Blue: 1-64
- Light Blue: 65-193
- Light Green: 194-336
- Green: 337-454
- Light Yellow: 455-563
- Yellow: 564-665
- Orange: 666-772
- Red: 773-885
- Dark Red: 886-1,040

2249 Indo-Pacific species
Figure 54 - Detail of composite biodiversity up to 200 m
Mollusks, Crustaceans, and Corals

65 Families

2249 Indo-Pacific species

Species Richness

- 1-64
- 65-193
- 194-336
- 337-454
- 455-563
- 564-665
- 666-772
- 773-885
- 886-1,040
Figure 55 - Mollusk and crustacean georeferenced records (28,060)
References

Internet Sites

Index

abdita, Favites 3-1860
abdutum, Cerithium 1-97
abduznadai, Goniopora 3-2141
abrolhosensis, Acropora 3-1455
abrotanoides, Acropora 3-1456
abyssicola, Trvellonia 2-964
abyssicola, Ziba 1-634
Acantodromia 2-1190
Acanthocarpus, Acanthosquilla 2-1410
Acanthastrea 3-2004
Acanthocarpus, Acanthosquilla 2-1410
Acanthocarpus, Acanthosquilla 2-1410
Acanthocarpus, Acanthosquilla 2-1410
Acanthocarpus, Acanthosquilla 2-1410
acritum, Acanthocarpus 2-1390
acritum, Charybdis 2-1307
Index

crassituberculata, Montipora 3-1659
crateriformis, Acropora 3-1482
craticulata, Cellana 2-787
craticulatum, Phalium 1-79
crebriscultpia, Haliotis 1-364
crebristriatus, Ischnochiton 2-1050
crenata, Harpa 1-415
crenata, Mitra 1-518
crenata, Thalama 2-1327
crenulata, Pterygia 1-610
cribellum, Cribarula 1-170
cribaria, Cribarula 1-171
cribarula 1-168

crispa, Oulophyllia 3-1910

crispata, Oulastrea 3-1908
cristata, Euphylia 3-1790
crocata, Lambis 2-913
crocea, Tridacna 1-44
crocinus, Callochiton 2-1010
crosnieri, Dicranodromia 2-1262
crosnieri, Gonoactyllum 2-1392
crosnieri, Metadytomene 2-1199
crosnieri, Oeophorus 2-1290

crissniar, Paramola 2-1254
crosseaum, Vasm 2-996
crosslandi, Platygrya 3-1916
crossota, Nutallina 2-1118

cruentata, Bursa 1-56

cruickshankii, Cypraeovulca 1-190
crusteraceae, Podabacia 3-1974
cryptoramosa, Galaxea 3-2056
cryptus, Montipora 3-1660

Ctenacts 3-1931

Ctenella 3-1984
cubensis, Scolyima 3-2045
cucullata, Astreopora 3-1632
cucullata, Leptoseris 3-1728
cucumerina, Mitra 1-519
cultrifer, Raoullius 2-1414
cumingii, Cribarula 1-172

cumingii, Echininus 1-423

cumulatus, Porites 3-2177

Cuna 1-4

cuneata, Acropora 3-1483
cuneata, Cuna 1-5

cuniformis, Mimicuna 1-15
curta, Montastrea 3-1901

cuvata, Caulastrea 3-1806
cuvata, Cycloseris 3-1936

cuvatus, Leptochiton 2-1141

cyclobates, Halioitis 1-365

cycloides, Cycloseris 3-1937

cyclosferis 3-1934
cylindrica, Acropora 3-1484
cylindrica, Erronea 1-231
cylindrica, Pontes 3-2178
cylindrica, Scaphophyllia 3-2003

cylindrica, Trivia 2-979
cylindrus, Dentogrya 3-1985

cymatium 2-968
cymodoce, Trapezia 2-1360

cynarina 3-2019

cyphastrea 3-1813
cyphrea 1-180
cypraeidae 1-142

cypraeovula 1-182
cytherea, Acropora 3-1485
dactyliola, Oliva 1-689
dactylus, Pterygia 1-611
daedala, Kaiapathina 2-985

daedalea, Alveopora 3-2129

daedalea, Platygrya 3-1917

dagnaudus 2-1203
dalli, Halioitis 1-366
damicornis, Pocillopora 3-2099

danaana, Mycetophyllia 3-2040

danae, Favia 3-1839

danae, Montipora 3-1661

danae, Pocillopora 3-2100

danae, Stylophora 3-2120

danae, Thalama 2-1328

danai, Funga 3-1949

danai, Pavona 3-1749
davoaensis, Oliva 1-690

davidis, Harpa 1-416

davie, Latrelliosps 2-1243

daviesae, Oliva 1-691
dayritana, Biascrurina 1-157
daurata, Cellana 2-788
decactis, Madracis 3-1762

decadia, Cyphastrea 3-1815

decipens, Distorsio 2-847

decipiens, Zola 1-336

decilis, Notocypreae 1-296

decora, Clorida 2-1428

decorus, Strombus 2-924

decurtata, Mitra 1-520

decussata, Pavona 3-1750

decussata, Psammocora 3-2231

deformis, Goniatmee 3-1877

deformis, Portes 3-2179

delicatula, Littoraria 1-429

delicatula, Montipora 3-1662

delta, Cuna 1-6

deltoides, Cuna 1-7

dendrina, Seriatopora 3-2116

Dendrogyra 3-1985

Dendrophylliidae 3-1774
dendrum, Acropora 3-1486
densa, Porites 3-2180
dentata, Sandalolitha 3-1981
dentatus, Callochiton 2-1011
dentatus, Lobophyllia 3-2024
dentatus, Strombus 2-925
denticauda, Clorida 2-1429
denticulata, Cellana 2-789
dentiens, Lepidochitona 2-1101
depressa, Mauritia 1-273

depsta, Patella 2-829
derasa, Tridacna 1-45

derawanensis, Acropora 3-1487

derjardi, Acanthoquilla 2-1411
desalwii, Acropora 3-1488

desetangis, Scabricola 1-623
deshayesi, Callochiton 2-1012
desilveri, Porites 3-2181

devaneyi, Metadytomene 2-1200

devantier, Plesiastrea 3-1924
deynzeri, Mitra 1-521

Diala 1-351
dialeucreum, Cerithium 1-109

Dialidae 1-351

Diaseris 3-1945
diauues, Bistola 1-147

Dichocoenina 3-1986
dickinsoni, Homola 2-1207

Dicranodromia 2-1259

Dictyosquilla 2-1434

dielasme, Warrana 1-22

diffuens, Pavona 3-1751
diffusa, Oculina 2-2061
digitalis, Trapezia 3-1361
digitata, Lambis 2-914

digitata, Montipora 3-1663
digitata, Pssmmocora 3-2232
digitifera, Acropora 3-1489
dilatata, Montipora 3-1664

dilatatus, Strombus 2-926

dilwynyi, Erosaria 1-205

diluculum, Paladustria 1-306

diminuta, Lobophyllia 3-2025

diminuta, Micromussa 3-2033

Diogeniia 2-1166

diomedeeae, Leptochiton 2-1142

Diploastrea 3-1821

Diploria 3-1822
dicus, Halioitis 1-367
dicus, Plerogyra 3-1799

dispar, Ischnochitona 2-1051
dissona, Halioitis 1-368

distigmatus, Ischnochitona 2-1052

Distorsio 2-846

Distorsionella 2-856

Distorsomina 2-858

distorta, Diaseris 3-1945

divaricata, Acropora 3-1490

divaricata, Porites 3-2182

diversicolor, Halioitis 1-369

divisa, Euphylia 3-1791

dijboutensis, Goniopora 3-2147

doederleini, Cantharellus 3-1928

doederleini, Dicranodromia 2-1263
dohmniana, Halioitis 1-370

dolichopus 2-962
Index

flexuosa, Warrana 1-25
flindersi, Vasum 2-997
florida, Acropora 3-1503
florida, Montipora 3-1669
floweri, Montipora 3-1670
foersteri, Dicranodromia 2-1265
foliosa, Leptoseris 3-1730
foliosa, Montipora 3-1671
foliosa, Pachyseris 3-1741
forbesi, Anacropora 3-1625
formosa, Acropora 3-1504
formosa, Madracis 3-1763
formosa, Trapezia 2-1364
fornix, Leptochiton 2-1145
foersteri, Dicranodromia 2-1265
foliosa, Leptoseris 3-1730
foliosa, Montipora 3-1671
foliosa, Pachyseris 3-1741
fornix, Leptochiton 2-1145
foveolata, Dictyosquilla 2-1434
foveolata, Montipora 3-1672
foveolatus, Callochiton 2-1015
foxi, Oliva 1-697
fraga, Mitra 1-531
fragilis, Agaricia 3-1718
fragilis, Diaseris 3-1946
fragilis, Strombus 2-930
fragum, Favia 3-1841
fralinae, Fungia 3-1950
fraternus, Ischnochiton 2-1058
friabilis, Montipora 3-1673
friendii, Zoila 1-337
frondens, Turbinaria 3-1779
frondifera, Pavona 3-1754
frontalis, Cateios 2-1287
fruticosa, Goniopora 3-2149
fruticulosa, Echinopora 3-1827
fulgens, Haliotis 1-374
fulgetrum, Ziba 1-647
fulgurita, Mitra 1-532
fulginita, Leptochiton 2-1146
fultonii, Barycypraea 1-144
fultonii, Mitra 1-533
fulva, Tetralia 2-1352
fulvescens, Mitra 1-534
fumosa, Oliva 1-698
funebralis, Oliva 1-699
fungifluenses, Mitra 1-533
furcata, Caulastrea 3-1808
furcata, Porites 3-2187
fusca, Scabricola 1-626
fuscodentata, Cypraeovula 1-192
fuscorubra, Cypraeovula 1-193
fusiformis, Strombus 2-931
futura, Hypsophrys 2-1230
gabrieli, Subterenochiton 2-1125
Gabrielona 2-861
gadaletae, Homolochunia 2-1216
gaimardi, Montipora 3-1674
Galaxea 3-2054
galea, Trivellona 2-969
galeola, Oliva 1-700
gallensis, Ischnochiton 2-1059
gangranosa, Erosaria 2-109
garciai, Cribrarula 1-175
garoni, Cellana 2-794
gardineri, Leptoseris 3-1731
Gardineroseris 3-1725
gaskoinii, Cribrarula 1-176
gatavakensis, Thalamita 2-1329
gausapata, Mitra 1-536
gemmacea, Echinopora 3-1828
gemmas, Pachyseris 3-1742
gemmata, Cymatium 2-876
gemmifera, Acropora 3-1506
gooffroyi, Trachyphyllia 3-2248
gibberulus, Strombus 2-932
gigantea, Haliotis 1-375
gigantea, Pavona 3-1755
gigantea, Ziba 1-648
gigas, Alveopora 3-2132
gigas, Tridacna 1-46
gilbertsoni, Mitra 1-536
glabra, Haliotis 1-376
glabra, Haptosquilla 2-1417
glabra, Mitra 1-537
glabra, Oxypora 3-2086
glabratum, Phalium 1-82
glabrescens, Euphyllia 3-1792
glabrous, Gonodactylaceus 2-1382
glauca, Acropora 3-1507
glene, Alorx 2-1280
globiceps, Acropora 3-1508
globosa, Trapezia 2-1365
globulus, Pustularia 1-323
gloriola, Domiporta 1-479
gloriosum, Cerithium 1-113
gracilipes, Latreillopsis 2-1244
gracilis, Astreopora 3-1634
gracilis, Harpa 1-418
gracilis, Purpuradusta 1-314
grahamae, Agaricia 3-1719
gratitifera, Oliva 1-701
grandicellus, Oliva 1-701
grandinatus, Tectarius 1-467
grandis, Acropora 3-1510
grandis, Hydophora 3-1994
grandperrini, Moloha 2-1250
granularis, Bursa 1-59
granularis, Patella 2-833
granulata, Charybdis 2-1312
granulata, Staphylaea 3-126
granulata, Phalium 1-83
granulosa, Acropora 3-1511
granulosa, Fungia 3-1952
grata, Cellana 2-795
gravid, Cribrarula 1-177
grevier, Gonodactylaceus 2-1383
grevier, Oratosquillina 2-1449
grayana, Mauritia 1-275
grayi, Choriplax 2-1003
grisea, Montipora 3-1675
grossularia, Drupa 1-660
guatemalensis, Ischnochiton 2-1060
guenterth, Styloceniella 3-1772
guttata, Erosaria 1-210
guttata, Mitra 1-539
guttata, Trapezia 2-1366
guttatus, Seniatopora 3-2117
guttatom, Cymatium 2-877
Gynineum 2-901
gynineum, Gynineum 2-903
Gyrosomilia 3-1988
habei, Distorsio 2-851
hadari, Drupa 1-661
haemastoma, Strombus 2-933
hahazimaensis, Coscinaraea 3-2224
haigaes, Ciliopagurus 2-1170
haimeana, Psammocora 3-2234
haimei, Acropora 3-1512
hakodadensis, Ischnochiton 2-1061
Halgyrineum 2-910
halicora, Favites 3-1866
Haliodetidae 1-357
Haliotis 1-357
Halomitra 3-1965
Hammondae, Purpuradusta 1-315
Hanleyella 2-1132
Hanleyidae 2-1004
hanleyorum, Oliva 1-702
Haplotrochiphila 2-1417
hargravesi, Haliotis 1-377
Haptosquilla 2-1417
Harpa 1-412
harpax, Harpiosquilla 2-1402
Index

kai, Homolodromia 2-1276
Kaiparathina 2-982
kajiyamai, Harpa 1-420
kamtschatkana, Halitopsis 1-380
karachiensis, Cellana 2-797
karubar, Dicranodromia 2-1266
katsua, Notudusta 1-289
kayae, Neocancilla 1-604
keegani, Westaustralocuina 1-34
keeni, Oliva 1-713
keeplana, Lepidochitonina 2-1105
Keijia 2-1438
keili, Ischnochiton 2-1064
kelleheri, Pocillopora 3-2107
kellyi, Montipora 3-1683
kempi, Oratosquilla 2-1446
Kempina 2-1439
kenti, Montigrya 3-2001
Kerguelenensis, Cellana 2-798
kermadecensis, Ischnochiton 2-1065
kermadecensis, Patella 2-834
kermadecensis, Ziba 1-652
kerstitchi, Oliva 1-714
kieneri, Bistoldia 1-150
kiensis, Trivellonia 2-970
kimbeensis, Acropora 3-1524
kirbiy, Madracis 3-1764
kirstyae, Acropora 3-1525
klemi, Callochiton 2-1017
klemoides, Callochiton 2-1018
Kleinorum, Strombus 2-935
Klunzingeri, Fungia 3-1954
Knysnaensis, Littorina 1-447
Komandorensis, Juvenichiton 2-1097
Koperbergi, Cerithium 1-118
kosurini, Acropora 3-1526
kraussi, Littorina 1-448
Krempfi, Ciliopagurus 2-1172
Kuehlmanni, Stylophora 3-2121
Kullar, Holomochunia 2-1217
Kurodai, Phalium 1-95
Kurohara, Lyncina 1-260
kurzi, Disorksio 2-852
kurzi, Oliva 1-715
labiatum, Phalium 1-86
labiaes, Strombus 2-936
labiosus, Strombus 2-937
Labrolineata, Erosaria 2-121
labyrinthiformis, Diploria 3-1823
lacera, Oxypora 3-2087
lacrymalis, Cynarina 3-2019
lacutca, Pectinaria 3-2092
lacuna, Favia 3-1843
lacunatum, Gyrineum 2-905
lacunosa, Mitra 1-547
laddi, Barabatattoa 3-1804
laevigata, Halitopsis 1-381
lagarodes, Oreoitlos 2-1299
lamarckii, Acropora 3-1527
lamarckii, Agaricaria 3-1721
lamarckiana, Mycetophyllia 3-2042
lamarckii, Bursa 1-60
lamarckii, Eosaria 1-213
Lambis 2-912
lambis, Lambs 2-915
lamelleta, Platgyrra 3-1918
lammellosa, Echinopora 3-1832
lampas, Charonia 2-866
lanchesteri, Gondactylus 2-1395
langfordi, Nesiocyprae 1-284
lankaensis, Podabacia 3-1975
lata, Lenisquilla 2-1440
laticostata, Patella 2-835
latidens, Leptochiton 2-1149
latissimus, Strombus 2-938
latistella, Acropora 3-1528
latistellata, Moseleya 3-1907
latistellata, Poreles 3-2919
latitudo, Bursa 1-61
latrelliae, Clorida 2-1430
Latreiliopsis 2-1240
latruncularia, Mitra 1-548
latus, Oreoitlos 2-1300
latuosoides, Alox 2-1281
Laxa, Favia 3-1844
lecoquinia, Oliva 1-716
lenhilli, Oliva 1-717
Lenisquilla 2-1440
Lens, Mitra 1-549
lentiginosa, Oliva 1-718
lentiginosa, Palmadusta 1-308
lentiginosus, Strombus 2-939
leoniardhilli, Oliva 1-719
leoniardi, Oliva 1-720
lepidia, Oliva 1-721
Lepidochiton 2-1099
Lepidozona 2-1113
Leporicyprea 2-248
Leptastria 3-1887
Leptocharactum, Cerithium 1-116
Leptochiton 2-1134
Leptothylla, Favia 3-1845
Leptoria 3-1894
Leptoseris 3-1726
Leucodon, Lyncina 1-261
Leucosidae 2-1279
Leucosticta, Nodillitoris 1-460
Leucostoma, Oliva 1-722
Leviathan, Lyncina 1-262
levii, Homologenus 2-1223
levis, Oxyphyllia 3-1911
Levisquilla 2-1441
lewisi, Distorsionella 2-856
linae, Acropora 3-1529
libbyae, Cuna 1-8
lichen, Porites 3-2192
lichtensteinii, Physogyra 3-1798
Lifuense, Cerithium 1-117
Liuensis, Leptochiton 2-1150
Ignaria, Oliva 1-723
Illumata, Pocillopora 3-2108
limacina, Staphylocera 1-327
limax, Herpolitha 3-1969
lineata, Tonella 2-1127
lineolatus, Ischnochiton 2-1066
Irata, Kejia 2-1438
Iratellus, Leptochiton 2-1151
Iratus, Leptochiton 2-1152
Iriulata, Diala 1-352
Iriulata, Lepidochiton 2-1106
lisetae, Nesiocyprae 1-285
lissum, Cerithium 1-118
Listeri, Acropora 3-1530
Listeri, Astreopora 3-1636
Listeri, Eronenia 1-236
Listeri, Strombus 2-940
Lithyphyllos 3-1971
Litoreus, Leptochiton 2-1153
Littorata, Mitra 1-550
Littoraria 1-424
Littorina 1-441
Littorinidae 1-423
Liu, Ciliopagurus 2-1173
Livescens, Cellana 2-799
Lizardensis, Favia 3-1846
lobata, Drupa 1-662
lobata, Gonioacora 3-2150
lobata, Lithyphyllos 3-1971
lobata, Poreles 3-2193
Lobophylla 3-2023
lobulata, Montipora 3-1684
loisae, Austroharpa 1-409
Loisetteae, Acropora 3-1531
lokani, Acropora 3-1532
Longicaudatum, Gyrineum 2-906
Longicosta, Patella 2-836
Longicyathus, Acropora 3-1533
Longipes, Hypsophys 2-1232
Longisepta, Galaxea 3-2059
Longispinosus, Callochiton 2-1019
Longispira, Oliva 1-724
Lophosquilla 2-1443
Lordhowensis, Acanthastrea 3-2011
Loriipes, Acropora 3-1534
Litorium, Cymatium 2-880
Louisae, Halygermum 2-910
Lioellii, Acropora 3-1535
Lowei, Lepidochitona 2-1107
Lucaenisis, Bursa 1-62
Luchuana, Basilcrura 1-160
Lucifera, Charybdis 2-1316
Lucuota, Mitra 1-551
pyramis, Mitra 1-572
pyriformis, Erronea 1-242
pyrum, Cymatium 2-891
pyrum, Phalium 1-90
quadrata, Busquilla 2-1424
Quadrella 2-1348
quadrimaculata, Blasinicula 1-162
Quaestiplax 2-1119
queekti, Haliotis 1-390
quirihorai, Bursa 1-63
rabauliensis, Notadusta 1-293
raderi, Oliva 1-748
radians, Cellana 2-807
radians, Siderastrea 3-2244
radians, Symphylia 3-2050
radiata, Cellana 2-808
radicalis, Turbinaria 3-1785
radix, Oliva 1-749
rambleri, Acropora 3-1576
ramosa, Goniatrea 3-1884
ramosa, Palauastrea 3-1768
ramus, Cuna 1-11
randalli, Astreopora 3-1641
randalli, Gonodactylaceus 2-1386
Ranelididae 2-864
rangiana, Patella 2-842
ranunculus, Homola 2-1214
Raoulserenea 2-1422
Raoulius 2-1414
raptidea, Harpiosquilla 2-1405
rashleighana, Blasicrura 1-163
rathbunae, Paromola 2-1257
rasilistoma, Tudicola 2-990
rubrolabiata, Oliva 1-753
rubrocinctus, Trizopagurus 2-1189
rubritincta, Mitra 1-577
rubridactyla, Tetralia 2-1354
rubra, Haliotis 1-394
rubina, Acropora 3-1582
rubinicolor, Trivia 2-980
rubinicolor, Trivia 2-980
rubractylus, Tetralia 2-1354
rubritincta, Mitra 1-577
rubrocinus, Trizopagurus 2-1189
rubrolabia, Oliva 1-753
rubusidaeus, Drupa 1-665
rubroes, Acropora 3-1581
rubrolii, Mitra 1-578
rubrescens, Haliotis 1-395
rubrifer, Doniporta 1-482
rubrofulgurata, Oliva 1-754
Index

Zoila 1-336
Zonaria 1-346
zonatum, Cerithium 1-138
Zooplusi 3-1983
zschau, Tonicina 2-1131